Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Regaya Ksiksi, Mohsen Graia, Ahmed Driss et Tahar Jouini*

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisie

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (V–O) = 0.002 Å R factor = 0.030 wR factor = 0.093 Data-to-parameter ratio = 12.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. Reçu le 24 mai 2004

Accepté le 15 juillet 2004

Internet 24 juillet 2004

Décavanadate sel double de dilithium et tétraammonium décahydrate, (NH₄)₄Li₂[V₁₀O₂₈]·10H₂O

In the title compound, the centrosymmetric polyanion consists of ten VO₆ edge-sharing distorted octahedra. Each of the two Li⁺ cations is surrounded by six water molecules in a distorted octahedral arrangement. The V···V distances are in the range 3.078 (5)–3.101 (5) Å and the four types of V–O bond lengths are in the range 1.601 (2)–2.361 (2) Å. The title compound is isostructural with $(NH_4)_4Na_2[V_{10}O_{28}]\cdot10H_2O$ and $K_4Na_2[V_{10}O_{28}]\cdot10H_2O$. It provides the first example of a decavanadate salt of a lithium cation.

Commentaire

L'anion décavanadate $[V_{10}O_{28}]^{6-}$ (Fig. 1) est l'un des polyoxoanions les plus étudié (Strukan *et al.*, 1999). En effet, on relève en bibliographie de nombreuses études structurales détaillées des phases contenant cet anion: Na₆[V₁₀O₂₈]·18H₂O (Durif *et al.*, 1980), Ca₃[V₁₀O₂₈]·17H₂O (Swallow *et al.*, 1966), Sr₃[V₁₀O₂₈]·10H₂O (Nieto *et al.*, 1993), K₂Zn₂[V₁₀O₂₈]·16H₂O (Evans, 1966), Cs₄[H₂V₁₀O₂₈]·4H₂O (Rigotti *et al.*, 1983), (NH₄)₆[V₁₀O₂₈]·6H₂O (Eglmeier *et al.*, 1993), (NH₄)₄Na₂[-V₁₀O₂₈]·10H₂O (Fratzky *et al.*, 2000) et K₄Na₂[V₁₀O₂₈]·10H₂O (Lee & Joo, 2003). Cependant, aucun composé décavanadate au lithium n'a été, à notre connaissance, encore étudié.

Notre composé renferme le cluster centrosymétrique $[V_{10}O_{28}]^{6-}$. Il est formé par dix octaèdres VO₆ partageant des arêtes. Les distances V–O, dans ces groupements, dépendent du type d'atome d'oxygène impliqué: elles sont comprises entre 1,601 (2) et 1,627 (2) Å pour les atomes d'oxygène

Figure 1

Représentation d'un groupement décavanadate. Les ellipsoïdes d'agitation thermique ont 50% de probabilité d'existence. Clef: Ellipsoïdes vert (V), jaune (Li), bleue (N) et rouge (O).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

Projection de la structure selon c montrant sa cohésion par les liaisons hydrogène. Clef: Les polyèdres bleu; VO6 et jaune Li(H2O)6; sphères bleue (N).

terminaux, entre 1,693 (2) et 2,066 (2) Å pour les atomes d'oxygène doublement liés, entre 1,914 (2) et 2,036 (2) Å pour les atomes d'oxygène triplement liées et entre 2,132 (2) et 2,361 (2) Å pour les atomes d'oxygène hexacoordinnés. Les distances V···V varient de 3,078 (2) á 3,101 (1) Å. Ces longueurs ainsi que les angles de liaisons dans l'anion $[V_{10}O_{28}]^6$ sont en accord avec celles relevées dans la littérature (Strukan et al., 1999; Evans, 1966).

Les cations Li⁺ hexacoordinés par des molécules d'eau forment par mise en commun d'arrêtes des dimères centrosymétriques $Li_2(H_2O)_{10}^{2+}$. Les distances Li-O varient de 2,084 (5) à 2,270 (5) Å.

Ces différents groupements s'empilent en couches parallèles au plan (010) (Fig. 2). La cohésion entre couches est assurée par des liaisons hydrogène de type N−H···O et O− H···O. Les cations ammonium établissent des liaisons hydrogène avec le groupement décavanadate. La structure de ce composé est isotype de celle du composé (NH₄)₄Na₂- $[V_{10}O_{28}] \cdot 10H_2O.$

La comparaison des paramètres de maille du composé étudié avec la phase (NH₄)₄Na₂[V₁₀O₂₈]·10H₂O montre que les paramètres de maille a et b diminuent comme on pouvait s'y attendre suite au remplacement de Na⁺ par Li⁺, mais le paramètre c augmente de façon inattendue. L'examen des différents distances inter-atomique révèle l'allongement des interactions hydrogène dans le composé étudié. En effet elles varient de 2,795 à 3,039 Å pour la phase $(NH_4)_4Na_2$ - $[V_{10}O_{28}]$ ·10H₂O et de 2,851 (3) à 3,305 (4) Å pour la phase $(NH_4)_4Li_2[V_{10}O_{28}]$ ·10H₂O. Ceci pourrait s'expliquer par la formation de liaisons Li-O à caractère covalent entraînant une moindre polarisation du lithium et un allongement des liaisons hydrogène, avec pour conséquence l'allongement du paramètre c.

Partie expérimentale

Le composé $(NH_4)_4 Li_2 [V_{10}O_{28}] \cdot 10H_2O$ a été préparé par dissolution des réactifs NH₄VO₃ (Fluka, 99,5%) et LiNO₃ (Prolabo, 99%) dans l'eau pure. Les rapports molaires sont NH₄VO₃-LiNO₃ = 2:1. Le pH de la solution est environ égal à 5. On ajoute progressivement de l'eau pure jusqu'à dissolution totale, le mélange réactionnel est ensuite transvasé dans un cristallisoir et mis à l'étuve à une température 343 K. Après trois jours, l'évaporation lente de la solution conduit à la formation de cristaux orange de forme parallélépipédique.

Z = 1

 $\theta = 2-27^{\circ}$

 $D_{\rm r} = 2,439 {\rm Mg m}^{-3}$

de 25 réflexions

 $0.58 \times 0.29 \times 0.14$ mm

2 réflexions de référence

fréquence: 120 min variation d'intensité: 1%

 $\Delta \rho_{\rm min}$ = -0,66 e Å⁻³

Paramètres de la maille à l'aide

Mo $K\alpha$ radiation

 $\mu = 2,80 \text{ mm}^{-1}$

T = 293 (2) K Bloc, orange

 $R_{\rm int}=0,\!002$

 $\theta_{\rm max} = 27,0^{\circ}$ $h = -10 \rightarrow 0$

 $k = -13 \rightarrow 12$

 $l = -14 \rightarrow 14$

Données cristallines

 $(NH_4)_4Li_2[V_{10}O_{28}] \cdot 10H_2O$ $M_r = 1223,61$ Triclinique, $P\overline{1}$ a = 8,523 (2) Å b = 10,272 (2) Å c = 11.110(2) Å $\alpha = 68,42(2)^{\circ}$ $\beta = 87,05 (2)^{\circ}$ $\gamma = 67,80 \ (2)^{\circ}$ V = 833,1 (3) Å³

Collection des données

Diffractomètre Enraf-Nonius CAD-4 Balayage $\omega/2\theta$ Correction d'absorption: balayage ψ (North *et al.*, 1968) $T_{\min} = 0,392, \ T_{\max} = 0,676$ 7758 réflexions mesurées 3628 réflexions indépendantes 3387 réflexions avec $I > 2\sigma(I)$

Affinement

Affinement à partir des F^2	Affinement des atomes
$R[F^2 > 2\sigma(F^2)] = 0,030$	d'hydrogène: combinaisions de
$wR(F^2) = 0,093$	cycles avec ou sans contraintes
S = 1,16	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 +$
3628 réflexions	$(0,7843P]$ where $P = (F_o^2 + 2F_c^2)/3$
298 paramètres	$(\Delta/\sigma)_{\rm max} = 0,004$
	$\Delta \rho_{\rm max} = 0.73 \ {\rm e} \ {\rm \AA}^{-3}$

Tableau 1 Distances et liaisons hydrogène (Å)

7 13	stane	cs ci	naisons	nyurt	igene	(д,).	
`	тт	4		D	TT	11	4	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
OW1−H1···O5	0,83 (4)	2,11 (2)	2,912 (3)	164 (3)
$OW1 - H2 \cdot \cdot \cdot O13^{i}$	0,81 (4)	2,44 (3)	3,130 (3)	144 (3)
OW2−H3···O9 ⁱⁱ	0,83 (4)	2,066 (18)	2,895 (3)	178 (4)
$OW2-H4\cdots O6$	0,83 (4)	2,03 (4)	2,851 (3)	174 (3)
OW3−H5···O7	0,84 (3)	2,032 (19)	2,851 (3)	166 (4)
OW3−H6···O13 ⁱⁱⁱ	0,84 (4)	2,20 (2)	2,985 (3)	156 (3)
OW3−H6···O14 ⁱⁱⁱ	0,84 (4)	2,62 (3)	3,187 (3)	126 (3)
$OW4-H7\cdots O8^{iv}$	0,80(2)	2,196 (18)	2,975 (3)	166 (3)
OW4−H8···O3	0,81 (2)	2,095 (18)	2,902 (3)	176 (4)
OW5−H9···O4	0,83 (2)	2,112 (19)	2,890 (3)	157 (3)
$OW5-H10\cdots OW2^{v}$	0,81 (2)	2,59 (2)	3,305 (4)	150 (3)
$N1 - H11 \cdots O14$	0,83 (2)	2,04 (2)	2,848 (3)	163 (3)
$N1 - H12 \cdot \cdot \cdot O10^{vi}$	0,84 (2)	2,08 (2)	2,866 (3)	154 (3)
$N1 - H12 \cdot \cdot \cdot O9^{iii}$	0,84 (2)	2,58 (3)	3,009 (3)	113 (3)
$N1-H13\cdots OW4^{vi}$	0,83 (2)	2,26 (2)	3,070 (3)	167 (3)
$N1 - H13 \cdot \cdot \cdot OW3$	0,83 (2)	2,58 (3)	3,028 (4)	116 (3)
$N1 - H14 \cdot \cdot \cdot O2^{iii}$	0,83 (2)	2,17 (2)	2,943 (3)	156 (3)
$N1-H14\cdots O7^{iii}$	0,83 (2)	2,59 (3)	3,040 (3)	115 (3)
$N2-H15\cdots O12^{vii}$	0,80 (2)	2,34 (3)	2,841 (3)	121 (3)
$N2-H15\cdots O11^{iii}$	0,80(2)	2,41 (3)	3,113 (3)	146 (3)
$N2-H16\cdots O13$	0,80 (3)	2,09 (2)	2,884 (3)	172 (4)
$N2-H17\cdots O6^{viii}$	0,79 (2)	2,40 (3)	2,986 (3)	131 (3)
$N2-H17\cdots O5^{ix}$	0,79 (2)	2,42 (2)	3,178 (3)	160 (3)
$N2-H17\cdots O4^{ix}$	0,79 (2)	2,54 (3)	3,076 (3)	126 (3)
N2-H18···OW5 ^{vii}	0,80 (2)	2,32 (2)	3,108 (4)	169 (4)

Codes de symétrie: (i) x, y, 1 + z; (ii) -1 - x, 1 - y, 1 - z; (iii) -x, -y, 1 - z; (iv) x - 1, 1 + y, z; (v) 1 + x, y - 1, 1 + z; (vi) 1 + x, y - 1, z; (vii) 1 - x, -y, 1 - z; (viii) -x, 1-y, -z; (ix) x, y, z-1.

Les atomes H des molécules d'eau et des atomes d'azote ont été contraints (O-H = 0.82 Å, H···H = 1.37 Å et N-H = 0.85 Å). De plus l'instruction AFIX 02 de SHELXL97 (Sheldrick, 1997) a été appliquée pour contraindre leurs facteurs d'agitation thermique par rapport aux atomes porteurs.

Collection des données: *CAD*-4 *EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); affinement des paramères de la maille: *CAD*-4 *EXPRESS*; réduction des données: *MolEN* (Fair, 1990); programme(s) pour la solution de la structure: *SHELXS*97 (Sheldrick, 1997); programme(s) pour l'affinement de la structure: *SHELXL*97 (Sheldrick, 1997); graphisme moléculaire: *DIAMOND* (Brandenburg, 1998); logiciel utilisé pour préparer le matériel pour publication: *SHELXL*97.

Références

Brandenburg, K. (1998). *DIAMOND*. Version 2,0. Gerhard-Domagk-Straße 1, 53121 Bonn, Allemenge.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

- Durif, A., Averbuch-Pouchot, M. T. & Guitel, J. C. (1980). Acta Cryst. B36, 680-682.
- Eglmeier, C., Range, K.-I., Kleynhans, A. & Heyns, A. M. (1993). S. Afr. J. Chem. 46, 7–13.
- Evans, H. T. (1966). Inorg. Chem. 5, 967–977.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, Les Pays-Bas.
- Fratzky, D., Schneider, M., Rabe, S. & Meisel, M. (2000). Acta Cryst. C56, 740–741.
- Lee, U. & Joo, H. C. (2003). Acta Cryst. E59, i122-i124.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Nieto, J. M., Salagre, P., Medina, F. & Sueiras, J. E. (1993). Acta Cryst. C49, 1879–1881.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Rigotti, G., Rivero, B. E. & Castellano, E. E. (1983). Acta Cryst. C39, 197-201.
- Sheldrick, G. M. (1997). SHELXS97 et SHELXL97. Université de Göttingen, Allemange.
- Strukan, N., Cindric, M. & Kamenar, B. (1999). Acta Cryst. C55, 291-293.
- Swallow, A. G., Ahmed, F. R. & Barnes, W. H. (1966). Acta Cryst. 21, 397-405.